ความหมายของศัพท์ตรรกศาสตร์
คำว่า “ตรรกศาสตร์” ได้มาจากศัพท์ภาษาสันสฤตสองศัพท์ คือ ตรรก และศาสตฺร ตรรก หมายถึง การตรึกตรอง ความคิด ความนึกคิด และคำว่า ศาสตฺร หมายถึง วิชา ตำรา รวมกันเข้าเป็น“ตรรกศาสตร์” หมายถึง วิชาว่าด้วยความนึกคิดอย่างเป็นระบบ ปราชญ์ทั่วไปจึงมีความเห็นร่วมกันว่า ตรรกศาสตร์ คือ วิชาว่าด้วย การใช้กฎเกณฑ์
การใช้เหตุผลวิชาตรรกศาสตร์นั้นมีนักปราชญ์ทางตรรกศาสตร์ได้นิยามความหมายไว้มากมาย นักปราชญ์เหล่านั้น คือ
1.พจนานุกรมศัพท์ปรัชญาอังกฤษ – ไทย ฉบับราชบัณฑิตยสถาน นิยามความหมายว่า“ตรรกศาสตร์ คือ ปรัชญาสาขาที่ว่าด้วยการวิเคราะห์และตัดสินความสมเหตุสมผลในการอ้างเหตุผล”
2.กีรติ บุญเจือ นิยามความหมายว่า “ตรรกวิทยา คือ วิชาที่ว่าด้วยกฎเกณฑ์การใช้เหตุผล”
3.”Wilfrid Hodges” นิยามความหมายว่า “ตรรกศาสตร์ คือ การศึกษาระบบข้อเท็จจริงให้ตรงกับความเชื่อ”
ประพจน์ (Proposition)
ประพจน์ คือ ประโยคที่เป็นจริงหรือเป็นเท็จเพียงอย่างเดียวเท่านั้น ประโยคเหล่านี้อาจจะอยู่ในรูปประโยคบอกเล่าหรือประโยคปฏิเสธก็ได้
ประโยคต่อไปนี้เป็นประพจน์
จังหวัดชลบุรีอยู่ทางภาคตะวันออกของไทย ( จริง )
5 × 2 = 2 + 5 ( เท็จ )
ตัวอย่างต่อไปนี้ไม่เป็นประพจน์
โธ่คุณ ( อุทาน )
กรุณาปิดประตูด้วยครับ ( ขอร้อง )
ท่านเรียนวิชาตรรกวิทยาเพื่ออะไร ( คำถาม )
ประโยคเปิด (Open sentence)
บทนิยาม ประโยคเปิดคือ ประโยคบอกเล่า ซึ่งประกอบด้วยตัวแปรหนึ่งหรือมากกว่าโดยไม่เป็นประพจน์ แต่จะเป็นประพจน์ได้เมื่อแทนตัวแปรด้วยสมาชิกเอกภพสัมพัทธ์ตามที่กำหนดให้ นั่นคือเมื่อแทนตัวแปรแล้วจะสามารถบอกค่าความจริง
ประโยคเปิด เช่น
1.เขาเป็นนักบาสเกตบอลทีมชาติไทย
2. x + 5 =15
3. y < - 6
ประโยคที่ไม่ใช่ประโยคเปิด เช่น
1.10 เป็นคำตอบของสมการ X-1=7
2.โลกหมุนรอบตัวเอง
3.จงหาค่า X จากสมการ 2x+1=8
การเชื่อมประพจน์ (connective)
1. ตัวเชื่อมประพจน์ “ และ ” ( conjunetion ) ใช้สัญลักษณ์แทน ∧ และเขียนแทนด้วย P ∧ Qแต่ละประพจน์มีค่าความจริง(truth value) ได้ 2 อย่างเท่านั้น คือ จริง(True) หรือ เท็จ(False) ถ้าทั้ง P และ Qเป็นจริงจะได้ว่า P∧Q เป็นจริง กรณีอื่นๆ P ∧ Q เป็นเท็จ เราให้นิยามค่าความจริงP ∧ Q
โดยตารางแสดงค่าความจริง (truth table) ดั้งนี้
P
|
Q
|
P ∧ Q
|
T
T
F
F
|
T
F
T
F
|
T
F
F
F
|
ตัวอย่าง 5+1 = 6 ∧ 2 น้อยกว่า 3 (จริง)
5+1 = 6 ∧ 2 มากกว่า 3 (เท็จ)
5+1 = 1 ∧ 2 น้อยกว่า 3 (เท็จ)
5+1 = 1 ∧ 2 มากกว่า 3 (เท็จ)
5+1 = 6 ∧ 2 มากกว่า 3 (เท็จ)
5+1 = 1 ∧ 2 น้อยกว่า 3 (เท็จ)
5+1 = 1 ∧ 2 มากกว่า 3 (เท็จ)
2. ตัวเชื่อมประพจน์ “ หรือ ” ( Disjunction ) ใช้สัญลักษณ์แทน V และเขียนแทนด้วย P
V Q และเมื่อ P V Q
จะเป็นเท็จ ในกรณีที่ทั้ง P และ Q เป็นเท็จเท่านั้น
กรณีอื่น P V Q เป็นจริง เรา ให้นิยามค่าความจริงของ P V Q
ตัวอย่างตารางค่าความจริง ดังนี้
P
|
Q
|
P V Q
|
T
T
F
F
|
T
F
T
F
|
T
T
T
F
|
ตัวอย่าง 5 + 1 = 6 V 2 น้อยกว่า 3 (จริง)
5 + 1 = 6 V 2 มากกว่า 3 (จริง)
5 + 1 = 1V 2 น้อยกว่า 3 (จริง)
5 + 1 = 1V 2 มากกว่า 3 (เท็จ)
5 + 1 = 6 V 2 มากกว่า 3 (จริง)
5 + 1 = 1V 2 น้อยกว่า 3 (จริง)
5 + 1 = 1V 2 มากกว่า 3 (เท็จ)
3. ตัวเชื่อมประพจน์ “ ถ้า….แล้ว” Conditional) ใช้สัญลักษณ์แทน → และเขียนแทนด้วยP→ Q
นิยามค่าความจริงของ P → Q โดยแสดงตารางค่าความจริงดังนี้
P
|
Q
|
P → Q
|
T
T
F
F
|
T
F
T
F
|
T
F
T
T
|
ตัวอย่าง 1 <
2 → 2 < 3 (จริง)
1 < 2 → 3 < 2 (เท็จ)
2 < 1 → 2 < 3 (จริง)
2 < 1 → 3 < 2 (จริง)
1 < 2 → 3 < 2 (เท็จ)
2 < 1 → 2 < 3 (จริง)
2 < 1 → 3 < 2 (จริง)
4. ตัวเชื่อมประพจน์ “ ก็ต่อเมื่อ ” (Biconditional) ใช้สัญลักษณ์แทน ⇔ และเขียนแทนด้วย P⇔Q นั้นคือ P⇔Q จะเป็นจริงก็ต่อเมือ
ทั้ง P และ Q เป็นจริงพร้อมกันหรือทั้ง P และ Q เป็นเท็จพร้อมกันตารางแสดงค่าความจริงของ P
⇔ Q
P
|
Q
|
P⇔Q
|
T
T
F
F
|
T
F
T
F
|
T
F
F
T
|
ตัวอย่าง 1
< 2 ⇔ 2 < 3 (จริง)
1 < 2 ⇔ 3 < 2 (เท็จ)
2 < 1 ⇔2 < 3 (จริง)
2 < 1 ⇔ 3 < 2 (เท็จ)
1 < 2 ⇔ 3 < 2 (เท็จ)
2 < 1 ⇔2 < 3 (จริง)
2 < 1 ⇔ 3 < 2 (เท็จ)
5. นิเสธ (Negation) ใช้สัญลักษณ์แทน ~ เขียนแทนนิเสธของ Pด้วย ~P ถ้า P เป็นประพจน์นิเสธของประพจน์ P คือประพจน์ที่มีค่าความจริงตรงข้ามกัน P
ตารางแสดงค่าความจริงดั้งนี้
P
|
~P
|
T
F
|
F
T
|
ตัวอย่าง ถ้า p แทนประโยคว่า "วันนี้เป็นวัน เสาร์" นิเสธของ p หรือ ~p คือประโยคที่ว่า "วันนี้ไม่เป็นวันเสาร์"
สัจนิรันดร์ (Tautology)
สัจนิรันดร์ (Tautology) คือ รูปแบบประพจน์ที่มีค่าความจริงเป็นจริงเสมอโดยไม่ขึ้นอยู่กับค่าความจริงของตัวแปรของแต่ละประพจน์ที่มีรูปแบบเป็นสัจนิรันดร์
เรียกว่า ประพจน์สัจนิรันดร์ (Tautology statement)ตัวอย่างที่ 1 P→ PvQเป็นสัจนิรันดร์
เราสามารถพิสูจน์ได้หลายวิธี
P
|
Q |
P v Q |
P → PvQ |
T
T
F
F
|
T
T
T
F
|
T
T
T
F
|
T
T
T
T
|
จากตารางแสดงค่าความจริงไม่ว่า P และ Q จะเป็นจริงหรือเท็จก็ตาม
ประพจน์ P→ PvQ เป็นจริงเสมอ ดังนั้นประพจน์นี้เป็น
สัจนิรันดร์
ความขัดแย้ง (Contradiction)
ความขัดแย้ง (Contradiction) คือ
รูปแบบประพจน์ที่มีค่าความจริงเป็นเท็จเสมอโดยไม่ขึ้นอยู่กับค่าความจริงของตัวแปรของแต่ละประพจน์ย่อยประพจน์ที่มีรูปแบบ
เป็นความขัดแย้ง เรียกว่า ประพจน์ความขัดแย้ง (Contradicithon statement)
ตัวอย่าง P ^ ~P เป็น ความขัดแย้ง ตารางแสดงค่าความจริง
p
|
~P
|
P ^ ~P
|
T
F
|
F
T
|
F
F
|
P ^ ~P มีค่าเป็นเท็จ สำหรับทุกๆ ค่าความจริงของ P
ดังนั้น P ^ ~P จึงเป็นความขัดแย้ง (Contradicithon )
ทฤษฎีตรรกสมมูล (Logical Equivalences)
ความรู้ประพจน์ตรรกะสมมูล (Logical equivalent statement)มีประโยชน์มาก
สำหรับการหาข้อโต้แย้งและข้อสรุปในทางคณิตศาสตร์ ซึ่งในทางปฏิบัติแล้ว การสรุปเหตุผลในแต่ละรูปจะยุ่งยากมากหากไม่อาศัยทฤษฎี ตรรกะสมมูลในการกล่าวอ้าง ดังนั้นจึงสรุปทฤษฎีตรรกะสมมูลไว้สำหรับใช้อ้างอิงต่อไป
กำหนดให้ p , q , rแทนประพจน์ใดๆ t แทนสัจนิรันดร์ c แทนความขัดแย้ง
สำหรับการหาข้อโต้แย้งและข้อสรุปในทางคณิตศาสตร์ ซึ่งในทางปฏิบัติแล้ว การสรุปเหตุผลในแต่ละรูปจะยุ่งยากมากหากไม่อาศัยทฤษฎี ตรรกะสมมูลในการกล่าวอ้าง ดังนั้นจึงสรุปทฤษฎีตรรกะสมมูลไว้สำหรับใช้อ้างอิงต่อไป
กำหนดให้ p , q , rแทนประพจน์ใดๆ t แทนสัจนิรันดร์ c แทนความขัดแย้ง
1. กฎการสลับที่ (Commutative
laws)
p ^ q = q ^p , p ^ q = q v p
2. กฎการเปลี่ยนหมู่ (Associative laws)
(p ^ q) ^r = p ^ (q ^ r) , (p ^ q) v r = p v (q ^ r)
3. กฎการแจกแจง (Distributive laws)
p ^ (q v r) = (p ^ q) v ( p ^ r) ,
p v (q ^ r) = (p v q) ^ ( p v r)
4. กฎเอกลักษณ์ (Identity laws)
p v t = t , p ^ t = p
5. กฎนิเสธ (Negative laws)
p v ~p = t , p ^ ~ p = c
6.กฎนิเสธซ้อนนิเสธ (Double negative laws)
~(~p) = p
7. กฎนิจพล (Idempotent laws)
p ^p = p , p = p
8. กฎของเดอมอเกน (demerger’s laws)
~(p ^q) = ~p v ~q , ~(p v q) = ~p v ~q
9. กฎการจำกัดขอบข่าย (Universal bound laws)
p v t = t , p ^ c = c
10. กฎการซึมซับ (Absorption laws)
p v (p ^ q) = p , p ^ (p v q) = p
11. นิเสธของ c และ t
~t = c , ~c=t
p ^ q = q ^p , p ^ q = q v p
2. กฎการเปลี่ยนหมู่ (Associative laws)
(p ^ q) ^r = p ^ (q ^ r) , (p ^ q) v r = p v (q ^ r)
3. กฎการแจกแจง (Distributive laws)
p ^ (q v r) = (p ^ q) v ( p ^ r) ,
p v (q ^ r) = (p v q) ^ ( p v r)
4. กฎเอกลักษณ์ (Identity laws)
p v t = t , p ^ t = p
5. กฎนิเสธ (Negative laws)
p v ~p = t , p ^ ~ p = c
6.กฎนิเสธซ้อนนิเสธ (Double negative laws)
~(~p) = p
7. กฎนิจพล (Idempotent laws)
p ^p = p , p = p
8. กฎของเดอมอเกน (demerger’s laws)
~(p ^q) = ~p v ~q , ~(p v q) = ~p v ~q
9. กฎการจำกัดขอบข่าย (Universal bound laws)
p v t = t , p ^ c = c
10. กฎการซึมซับ (Absorption laws)
p v (p ^ q) = p , p ^ (p v q) = p
11. นิเสธของ c และ t
~t = c , ~c=t
ตัวบ่งปริมาณ(Quantified statement)
ตัวบ่งปริมาณในตรรกศาสตร์ มี 2 ชนิด คือ
1) ตัวบ่งปริมาณ "ทั้งหมด" หมายถึงทุกสิ่งทุกอย่างที่ต้องการพิจารณาในการนำไปใช้อาจใช้คำอื่นที่มีความหมายเช่นเดียวกับ "ทั้งหมด" ได้ ได้แก่ "ทุก" “ทุก ๆ" "แต่ละ" "ใด ๆ" ฯลฯ เช่น คนทุกคนต้องตาย, คนทุก ๆ คนต้องตาย, คนแต่ละคนต้องตาย, ใคร ๆ ก็ต้องตาย
2) ตัวบ่งปริมาณ "บาง" หมายถึงบางส่วนหรือบางสิ่งบางอย่างที่ต้องการพิจารณา ในการนำไปใช้อาจใช้คำอื่นที่มีความหมายเช่นเดียวกันได้ ได้แก่ "บางอย่าง" "มีอย่างน้อยหนึ่ง" เช่น สัตว์มีกระดูกสันหลังบางชนิดออกลูกเป็นไข่, มีสัตว์มีกระดูกสันหลังอย่างน้อยหนึ่งชนิดที่ออกลูกเป็นไข่ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
1.∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
2. ∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
3. ∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
4.∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง
1) ตัวบ่งปริมาณ "ทั้งหมด" หมายถึงทุกสิ่งทุกอย่างที่ต้องการพิจารณาในการนำไปใช้อาจใช้คำอื่นที่มีความหมายเช่นเดียวกับ "ทั้งหมด" ได้ ได้แก่ "ทุก" “ทุก ๆ" "แต่ละ" "ใด ๆ" ฯลฯ เช่น คนทุกคนต้องตาย, คนทุก ๆ คนต้องตาย, คนแต่ละคนต้องตาย, ใคร ๆ ก็ต้องตาย
2) ตัวบ่งปริมาณ "บาง" หมายถึงบางส่วนหรือบางสิ่งบางอย่างที่ต้องการพิจารณา ในการนำไปใช้อาจใช้คำอื่นที่มีความหมายเช่นเดียวกันได้ ได้แก่ "บางอย่าง" "มีอย่างน้อยหนึ่ง" เช่น สัตว์มีกระดูกสันหลังบางชนิดออกลูกเป็นไข่, มีสัตว์มีกระดูกสันหลังอย่างน้อยหนึ่งชนิดที่ออกลูกเป็นไข่ค่าความจริงของประพจน์ที่มีตัวบ่งปริมาณ
1.∀x[P(x)] มีค่าความจริงเป็นจริง เมื่อ x ทุกตัวในเอกภพสัมพัทธ์ทำให้ P(x) เป็นจริง
2. ∀x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อมี x อย่างน้อย 1 ตัวที่ทำให้ P(x) เป็นเท็จ
3. ∃x[P(x)] มีค่าความจริงเป็นจริง เมื่อมี x อย่าน้อย 1 ตัวที่ทำให้ P(x) เป็นจริง
4.∃x[P(x)] มีค่าความจริงเป็นเท็จ เมื่อไม่มี x ใดๆ ในเอกภพสัมพัทธ์ที่ทำให้ P(x) เป็นจริง
การให้เหตุผล (Reasoning)โดยทั่วไปกระบวนการให้เหตุผลมี 2 ลักษณะคือ
1.การให้เหตุผลแบบนิรนัย เป็นการให้เหตุ โดยนำข้อความที่กำหนดให้ ซึ่งต้องยอมรับว่าเป็นจริง ทั้งหมด เรียกว่า เหตุ และข้อความจริงใหม่ที่ได้เรียกว่า ผลสรุป ซึ่งถ้า พบว่าเหตุที่กำหนดนั้นบังคับให้เกิดผลสรุปไม่ได้ แสดงว่า การให้เหตุผลดังกล่าวสมเหตุสมผล แต่ถ้าพบว่าเหตุที่กำหนดนั้นบังคับให้เกิดผลสรุปไม่ได้แสดงว่า การให้เหตุผลดังกล่าวไม่สมเหตุสมผล
1.การให้เหตุผลแบบนิรนัย เป็นการให้เหตุ โดยนำข้อความที่กำหนดให้ ซึ่งต้องยอมรับว่าเป็นจริง ทั้งหมด เรียกว่า เหตุ และข้อความจริงใหม่ที่ได้เรียกว่า ผลสรุป ซึ่งถ้า พบว่าเหตุที่กำหนดนั้นบังคับให้เกิดผลสรุปไม่ได้ แสดงว่า การให้เหตุผลดังกล่าวสมเหตุสมผล แต่ถ้าพบว่าเหตุที่กำหนดนั้นบังคับให้เกิดผลสรุปไม่ได้แสดงว่า การให้เหตุผลดังกล่าวไม่สมเหตุสมผล
ตัวอย่าง เหตุ 1. คนทุกคนต้องหายใจ
2 . นายเด่นต้องหายใจ
ผลสรุป นายเด่นต้องหายใจ
จะเห็นว่า จากเหตุที่1 และเหตุที่ 2 บังคับให้เกิดผลสรุปดังนั้นการให้เหตุผลนี้สมเหตุสมผลสมเหตุสมผล
2.การให้เหตุผลแบบอุปนัย เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลายๆตัวอย่าง
มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป หรือ คำพยากรณ์และจะต้องมีข้อสังเกต หรือ
ผลการทดลอง หรือ มีประสบการณ์ที่มากพอที่จะปักใจเชื่อได้
แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่เหมือนกับการให้เหตุผลแบบนิรนัย
ตัวอย่างการให้เหตุผลแบบอุปนัย เช่น
เราเคยเห็นว่ามีปลาจำนวนมากที่ออกลูกเป็นไข่ เราจึงอนุมานว่า “ปลาทุกชนิดออกลูกเป็นไข่ ” ซึ่งกรณีนี้ถือว่าไม่สมเหตุสมผล ทั้งนี้เพราะข้องสังเกตหรือ ตัวอย่างที่พบว่ายังไม่มากพอที่จะสรุป เพราะโดยข้อเท็จจริงแล้วมีปลาบางชนิดที่ออกลูกเป็นตัว เช่น ปลาหางนกยูง เป็นต้น
ตัวอย่างความสมเหตุสมผลของการให้เหตุผลโดย
ตัวอย่างที่ 1 เหตุ 1 : คนทุกคนเป็นสิ่งที่มีสองขา
เหตุ 2 : ตำรวจทุกคนเป็นคน
ผลสรุป ตำรวจทุกคนเป็นสิ่งที่มีสองขา
จากเหตุ 1
ตัวอย่างความสมเหตุสมผลของการให้เหตุผลโดย
ตัวอย่างที่ 1 เหตุ 1 : คนทุกคนเป็นสิ่งที่มีสองขา
เหตุ 2 : ตำรวจทุกคนเป็นคน
ผลสรุป ตำรวจทุกคนเป็นสิ่งที่มีสองขา
จากเหตุ 1
จากเหตุ 2
จากแผนภาพจะเห็นว่า วงของ " ตำรวจ
" อยู่ในวงของ " สิ่งมี 2 ขาแสดง " แสดงว่า " ตำรวจทุกคนเป็นคนมีสองขา "
ซึ่งสอดคล้องกับผลสรุปที่กำหนดให้ ดังนั้น การให้เหตุผลนี้สมเหตุสมผล
การใช้ความสัมพันธ์ระหว่างพจน์
ในการตรวจสอบความสมเหตุสมผล
ตัวอย่างที่ 1 เหตุ 1 : จำนวนตรรกยะทุกจำนวนเป็นจำนวนจริง
เหตุ 2 : 1เป็นจำนวนอตรรยะ
ผลสรุป : 1เป็นจำนวนจริง
พจน์กลาง คือ จำนวนอตรรกยะ กระจายในข้อตั้งแรก ตรรกะบทดังกล่าวจึงสมเหตุสมผล
ตัวอย่างที่ 1 เหตุ 1 : จำนวนตรรกยะทุกจำนวนเป็นจำนวนจริง
เหตุ 2 : 1เป็นจำนวนอตรรยะ
ผลสรุป : 1เป็นจำนวนจริง
พจน์กลาง คือ จำนวนอตรรกยะ กระจายในข้อตั้งแรก ตรรกะบทดังกล่าวจึงสมเหตุสมผล
ตัวอย่างที่ 2 เหตุ 1 : คนไทยทุกคนเป็นผู้ที่ยิ้มแย้มแจ่มใส
เหตุ 2 : ชาวปากเซเป็นคนยิ้มแย้มแจ่มใส
ผลสรุป : ชาวปากเซเป็นคนไทย
พจน์กลาง คือ คนยิ้มแย้มแจ่มใส เป็นพจน์ไม่กระจาย ตรรกะบทดังกล่าวจึงไม่สมเหตุสมผล
อ้างอิง
กีรติ บุญเจือ.2520 . ตรรกวิทยาทั่วไป.กรุงเทพฯ: ไทยวัฒนาพานิช.
จำนงค์ ทรงประเสริฐ.2507. ตรรกศาสตร์.กรุงเทพฯ: เลียงเซียง.
ประยงค์ แสนบุราณ. ตรรกศาสตร์เบื้องต้น.ขอนแก่น: วิทยาลัยขอนแก่น.
พกสูตรเข้าสอบ คณิต ม.ปลาย พิมพ์ครั้งที่ 7 ปทุมธานี : สกายบุ๊กส์, 2551.
สุวร กาญจนมยูร.2523. ตรรกศาสตร์สัญลักษณ์.กรุงเทพฯ: ไทยวัฒนาพานิช.
ไม่มีความคิดเห็น:
แสดงความคิดเห็น